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Dynamic Three-Dimensional TLM Analysis
of Microstriplines on
Anisotropic Substrate

G. E. MARIKI anD C. YEH, FELLOW, IEEE

Abstract —The frequency-dependent propagation characteristics of a
hybrid mode along microstriplines on anisotropic substrates are presented
for the case where the constitutive parameter tensors may be diagonalized.
A generalization of the three-dimensional transmission-line-matrix (TLM)
numerical procedure is used to obtain results for the phase constant B,
effective permittivity €., and the characteristic impedance Z, all as
functions of frequency and the shape ratio (w/k). Also shown are results
for coupled microstrips on a sapphire substrate.

I. INTRODUCTION

LTHOUGH THE WORK reported in this paper was

carried out several years ago (but unpublished) [1],
recent interest in high-frequency (millimeter and submilli-
meter wave-length) microstrip circuits has prompted us to
publish our results [2]. It appears that the transmission-
line-matrix (TLM) approach that we used ‘to solve the
many problems dealing with enclosed microstrips with
anisotropic and/or inhomogeneous substrates is rapidly
becoming a very acceptable and viable way of dealing with
these problems in spite of its demand for large computer
memory and time [3], [4]. This is because of the enormous
decrease in computational cost as well as the realization of
the simplicity and versatility of the TLM approach as
compared with other available numerical or analytical
means [5]-[7]. ,

Most of the original work on microstrip was based on a
TEM approximation mainly because the resultant formula-
tion is vastly simplified, and the solutions obtained agree
closely with experimental results in the low-frequency range
(below X-band). That this is so is exemplified by the
pioneering works of Wheeler [8], using a conformal map-
ping technique, and Silvester [9] who applied a Green’s
function formulation. As the need arose for hybrid in-
tegrated circuits operating at frequencies as high as 20
GHz and above, the TEM solutions were no longer satis-
factory since dispersion, which is significant at high fre-
quencies, is ignored under a TEM approximation. Several
techniques have been applied to determine the dispersion
properties of microstrip. Among these were Getsinger’s
empirical formulation [10] and the TLM method used by
Akhtarzad and Johns [11], [12]. The above-mentioned
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authors have presented results for the phase constant B8
and /or effective permittivity e as functions of frequency.
Their results were strictly for isotropic substrates.

One of the practical design difficulties of using isotropic
substrates, such as alumina, is the significant variation in
the dielectric permittivity from different manufacturers or
even from batch to batch from the same manufaciurer.
This essentially means that repeated measurements of the
dielectric permittivity are required for accurate design of
microstrip circuits. The use of anisotropic substrates with
stable electrical properties, such as sapphire, alleviates this
difficulty although it introduces a new problem in that new
techniques have to be developed to analyze microstriplines
on anisotropic substrates. The TEM approach was again
used by Owens, Aitken, and Edwards [13] and Alexopoulos
et al. [14] to determine the quasi-static properties of micro-
striplines on anisotropic substrates with a diagonal dielec-
tric tensor €. Measurements of the dispersion characteris-
tics of microstrip on sapphire substrates were also reported
by Edwards and Owens [15]. The TEM solutions men-
tioned above suffer from the same limitations as those
developed for isotropic substrates. The need for an effi-
cient technique to determine the frequency-dependent (dy-
namic) propagation characteristics of microstriplines on
anisotropic substrates is therefore apparent. This was the
motivation behind our work which was completed in 1978.
Since then a number of publications have appeared de-
scribing various techniques [5]-[7].

In the following, a description of the modified TLM
technique applied to the enclosed microstrip on anisotropic
substrate problems will be given. Numerical results with a
discussion on the accuracy of the TLM technique will then
be presented. Also shown are further examples showing the
application to microstrip on periodically varying substrates
as well as the coupled microstrips on anisotropic substrate.

II. THE TRANSMISSION-LINE-MATRIX TECHNIQUE

The geometry of the shielded microstripline is shown in
Fig. 1. It consists of a conductive metallic strip of width w
and zero thickness placed on a dielectric substrate of
thickness 4 and a box-type enclosure of a perfectly con-
ducting material. The thickness of the metallic strip is
assumed to be vanishingly small and the properties of the
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Fig. 1.

substrate are characterized by diagonal tensors of rank
two, i.e., a dyadics, for the permittivity ¢, permeability p,
and conductivity g. The tensor elements are, in general,
functions of the cross-sectional coordinates x and y in a
rectangular coordinate system. Thus

€:=€0 0 Ey‘y(x9 y) 0 (1)
0 0 e..(x, )
’J‘xx(x’ y) O O
=t 0 p,(x, y) 0 ()
0 0 o (x, y)
0 (X, ») 0 0
g= 0 oyy(x,y) 0 (3)
0 0 0,.(x, )

where €, and p, are the free-space permittivity and per-
meability, respectively. Maxwell equations in component
form are

aaf,z - 87?‘ = = poti(x, ) agx (4)
%“%%= —#oﬂyy(x,y)%ﬁﬁ (5)
%%‘ aaiy — koo (x, y) ag (6)
aa}ylz - *H; = (. (x, ¥) +egeo(x, y))%Ex (7)
%_%= (°y‘y(x’,V)+<oeyy(x,y))%Ey (8)
aiy ;;" = (0. (x, y)+ece.. (x, y))%EZ. (9)

The TLM technique will be used to solve the above set
of equations together with the appropriate boundary con-
ditions. We shall assume that the guided wave is propagat-
ing in the z-direction

E, H~e /P
where B is the propagation constant.
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Fig. 2. (a) Shunt-connected TEM lines. (b) A generalized shunt node.

A. The Shunt Node

Fig. 2(a) shows how a number of ideal lossless two-wire
transmission lines can be connected to form a two-dimen-
sional transmission-line matrix. Shunt nodes are formed
where the lines cross and these present impedance discon-
tinuities for waves propagating along the lines. The inter-
nodal separation A/ is uniform throughout the matrix.
Note that for clarity in Fig. 2(a), single lines are used to
represent a transmission-line pair. A generalized shunt
node is depicted in Fig. 2(b). Here an open-circuited shunt
stub of length A//2 and normalized characteristic admit-
tance Y, (normalized with respect to the characteristic
impedance of the main line) is attached to the node. This is
called the permittivity stub. Also shown in Fig. 2(b) is an
infinite loss stub of normalized characteristic admittance
G,,. Hence, one notices that a pulse injected into the loss
stub from the node will be completely lost. A lumped
parameter equivalent network for an elementary matrix
section is shown in Fig. 3. In this equivalent network, the
short section of an open-circuited transmission line (the
permittivity stub) is represented by a shunt admittance of
value (;Y,,/{L/C)tan(wAl/2¢c). If wAl/2c=mAl/\
<1, then tan(wAl/Zc) (wAl/2)/LC . Therefore, the
admittance of the open-circuited stub is = JoCY, Al/2.
This can be recognized as a capacitive admlttance Hence
the total capacitance at the node is

Yy
C’=2C(1+TAI). (10)

The infinite loss stub of normalized characteristic admit-
tance G,, is represented by a lumped conductance of
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Fig. 3. Shunt node lumped network representation.
magnitude
6./ %
wV L~ Z,
where

(11)

Application of Kirchoff’s Current Law at node A gives (see
Fig. 3)

I, dl, G, Y\ 9
5 " o [ZOAI+2C(1+ )??'Z]V' (12)

The above analysis was carried out for a shunt node in the
x —z plane. A similar analysis for a shunt node in the x—y
and y-z planes leads to, respectively,

I, a1, | G, AY

At ;

ax 3y (ZOAI+2C(1+ )(?t)V’ (13)
and

a1, dI, G, Y.\ @

3, (zomzc( )‘a’?)Vx' (14)

One notes that the subscripts for the currents do not

correspond to the coordinate direction along which the

current flows; the subscripts are assigned at the series node
(see Fig. 4) where a series node in, say, the y—z plane has
common node current I, etc. The choice of the subscripts
makes it easier to identify the line equations with Maxwell’s
equations. The use of stubs, each with a different character-
istic admittance, aliows the TLM model to represent aniso-
tropic media correctly.

From (7) and (14), the following equivalences between
the TLLM equation and Maxwell’s equations can be identi-
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Fig. 4. A shunt node in the x—z plane connected to series nodes in the
y—z and x—y planes.

fied:
H,=1, (15)
H,=1I, (16)
Gox
oxx = ZO Al (17)
e, =2C (18)
4+,
€xx = 4 = (19)
E=V, (20)
Similarly, from (8) and (12), we have
Hx = Ix (21)
E, =V, (22)
G
-
Oy = Zy,Al ‘ (23)
4+Y,
€= (24)

Equations (9) and (13) yield the following equivalences:

E,=V, (25)
Gzz
0'zz = ZO Al (26)
! 4+ \Yzz |
€2 = 4 (27)

From the above analysis, it is concluded that half of
Maxwell’s equations can be fully accounted for by three
shunt nodes oriented in the x—y, y-z, and x—z planes.
The remaining half of Maxwell’s equations will be satisfied
by the series node.
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Fig. 5. (a) Series-connected TEM lines. (b) A generalized series node.

Lag /2

LAL/2

|
(B

2

Fig. 6. Series node lumped network representation.

B. The Series Node

A series-connected two-dimensional transmission-line
matrix is shown in Fig. 5(a). As in the shunt-connected
TLM, the lines are ideal and lossless and the uniform mesh
parameter is Al. Fig. 5(b) shows a generalized series node
which is equipped with a short-circuited stub called the
permeability stub. The equations satisfied by the series
node can be derived using the lumped parameter represen-
tation shown in Fig. 6. The input impedance of the short-
circuited transmission line is

Zm=ijxV% tan(wAl/2¢c) = jwlZ,  Al/2. (28)
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The validity of (28) is the same as was stipulated for the
short open-circuited stub associated with the shunt node,
namely,

wAl  wAl

Equation (28) represents an inductive impedance, the mag-
nitude of the inductance being

2 (30)

Application of Kirchoff’s Voltage Law around the loop at
the series node (Fig. 6) gives

Z
L= ( = AI)L.

o
at -

Zxx)

A series node in the x—y and x-z planes will, respec-
tively, satisfy the following equations:

v . Z _\dl

—r_ Tx funt7-4% Wnfiut 4

I 3y 2L(1+ n ) a1 (32)
and

v, v, Zyy aIy

9z - x _2L(1+_4—)W' (33)

The following additional equivalences complete the TLM
modeling of Maxwell’s equations:

po=2L (34)
o= T (29)
mw54tfﬁ 56)
po= (37)

We have demonstrated that the use of three shunt and
three series nodes oriented in the x—y, x—z, and y-z
planes enables all of Maxwell’s equations for an inhomoge-
neous anisotropic medium to be accounted for properly.
What remains is to devise a way of interconnecting the six
nodes to form a three-dimensional node in space. One
notices that no restriction on the spatial distribution or
magnitudes of ¢, p, and g has been placed.

C. The Three - Dimensional Node

Fig. 7 shows the construction of a three-dimensional
node capable of representing three-dimensional space and
satisfying Maxwell’s equations for inhomogenous aniso-
tropic media. The three-dimensional node is an intercon-
nection of three shunt nodes and three series nodes struc-
tured in such a manner that there is one shunt node and
one series node in each coordinate plane. The use of these
six nodes results in a model that properly accounts for all
of Maxwell’s field equations. Again, in Fig. 7, a single line
is used to represent a transmission-line pair. The nodes are
named to correspond to the field quantity they represent.
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Fig. 7. A three-dimensional node.

Thus, the common voltage at shunt node E, corresponds to
the x component of the electric field. The common current
at series node H, corresponds to the x component of the
magnetic field, and so on.

To represent a three-dimensional propagation space, a
number of these three-dimensional nodes are connected to
form a three-dimensional mesh network. Maxwell’s equa-
tions are thus satisfied at each three-dimensional node.

D. Boundary Conditions in the TLM Model

1) Electric and Magnetic Walls: In the plane of an
electric wall, the tangential electric field must vanish. Simi-
larly, in the plane of a magnetic wall, the tangential mag-
netic field must be zero. Since the corresponding quantities
for the electric and magnetic field in the TLM model are
the voltage and current in the transmission lines, electric
and magnetic walls can be easily simulated in the TLM
model by short-circuiting and open-circuiting the nodes,
respectively. For example, to set E, and E, equal to zero
in a particular plane, all shunt nodes E, and E, lying in
that plane are shorted. To set, say, H, and H, equal to
zero in some plane, the series nodes H, and H, in that
plane are simply open-circuited.

2) Dielectric Boundary: The continuity of tangential elec-
tric and magnetic fields across a dielectric/dielectric
boundary is automatically satisfied in the TLM model
when the three-dimensional nodes are joined up by elemen-
tary sections of ideal transmission lines. For example, for a
dielectric/dielectric boundary in the x—z plane as shown
in Fig. 8, since the common voltages at the shunt nodes
correspond to the electric field and the common currents at
the series nodes correspond to the magnetic field, the
following equations valid for a transmission-line element
joining the nodes on either side of the boundary are
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Fig. 8. Continuity of tangential fields across a dielectric boundary.
applicable:
JE,
E,=E,,+ 3y2 Al (38)
JE,
E,=E,+ 8y2 Al (39)
JoH,,
Ho=Ho+ =2 Al (40)
OH,
H,=H,+ 8y2 Al (41)

Since the voltage and current in the transmission line are
smooth functions of position along the line, the continuity
of the tangential fields across a boundary placed in be-
tween the nodes is assured.

E. The Numerical Procedure

1) Series and Shunt Nodes Scattering Matrices: In the
TLM method, the numerical procedure invelves determina-
tion of the impulse response of the network. Delta-function
impulses are introduced at various locations in the matrix
and these travel along the ideal transmission lines at the
speed of light before being scattered at the nodes. Any of
the six field components may be excited initially by speci-
fying initial impulses at the appropriate nodes. Likewise,
the response for any of the field components may be
monitored by recording the pulses that pass through the
relevant nodes.

The shunt and series nodes represent impedance discon-
tinuities to the traveling pulses. From Figs. 2(b) and 3(b),
the voltage scattering matrices for the shunt and series
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where
(43)
[I] is the unit matrix and sk stands for shunt. The sub-

scripts jj may be xx, yy, or zz as appropriate. For the
series node, we have

Y=4+Y,+G,

-1 1 1 -1 -1
) 1 -1 -1 1 1
[Sl=2| 1 -1 -1 1 1 |+[1]
1 1 1 -1 -1
-z, Z, 42, —-%2, —-Z,
(44)
where

Z=4+2Z,. (45)

Thus, an impulse impinging on a shunt node would be
scattered in accordance with (42) and an impulse incident
on a series node would be scattered following (44).

2) Pulse Propagation in the TLM Model: The prop-
agation of pulses in the TLM model is illustrated in Fig. 9,
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where the first two iterations following an initial excitation
pulse in a two-dimensional shunt-connected transmission-
line matrix are shown. For simplicity, we assume free-space
propagation, in which case there are no open-circuited
shunt stubs connected to the nodes. The distance between
the nodes is A/ and the time interval between iterations is
t, = Al /c since the individual pulses travel at the speed of
light. Upon impinging on a node, the pulse is scattered into
the four coordinate directions in accordance with (42).

Propagation in a three-dimensional model can be visuai-
ized in a similar manner. In this case, the pulses are
scattered at the shunt nodes as well as the series nodes.

3) Form of Output and Accuracy of Results: The output
response function consists of a train of impulses of varying
magnitude in the time domain separated by a time interval
Al /c. Thus, the theoretical frequency response obtained by
taking the Fourier transform of the output response con-
sists of a series of delta functions in the frequency domain
corresponding to the modal resonant frequencies of the
cavity for which a solution exists. Truncation of the output
impulse response function (due to practical reasons) causes
a spreading of the solution delta function into sin x /x type
curves.

Let V. (¢) be the output impulse function taken for N
iterations of the matrix, i.e, the function starts at time
t=0 and finishes at time ¢ = NAl/c. V_,(?) may be re-
garded as an impulse function V_ (), extending to time =
infinity multiplied by a rectangular time function V,(¢) of
unit height and width NA/ /¢ as follows:

Vour () =V, () XV, (2) (46)
where
NA/
v, (1) = (47)
0, elsewhere

If the Fourier transform of V,,(¢), V.(¢), and V,(¢) are
Sout([)s S (f), and S,(f), respectively, then the Fourier
transform of (46) is given by the convolution of S_(f) and
S,(f); Le,

Sl )= [ Su(@)8,(f~e)de (48)
and
Sin'nNAlf
()= St e M. (49)

c

Equations (47) and (48) indicate that S,(f), a curve of
sin x /¢ form, is placed in each of the positions of the delta
functions of the exact response S, ( f), in both the positive
and negative frequency planes. The accuracy of the result
depends on the number of iterations N, since the greater
N, the sharper the maximum peak of the curve. The
accuracy is also affected by interference from the tail
regions of the reflected solutions in the negative frequency
plane as well as from the tail regions of neighboring
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solution points corresponding to other modes of prop-
agation.
1.

To study the accuracy of the TLM approach described
above, we shall compare our results with those obtained
using quasi-static approximations. Specifically, we shall
consider the comparison of the single microstrip problem
for which quasi-static solutions have been presented [13],
[14]. The confidence we gain from this study will enable us
to use this TLM technique to treat other microstrip prob-
lems and present results which have not been analyzed
elsewhere.

Quasi-static solutions for the single microstrip problem
have been computed by Owens et al. [13] and Alexopoulos
et al. [14]. Owens et al. have applied the method of finite
differences to compute the capacitance per unit length C.
Knowing the value of C, they were able to compute the
low-frequency effective dielectric constant €,,. An anal-
ytical expression for an equivalent isotropic dielectric
constant e,,, was developed. The implication is that a
microstripline on an isotropic substrate with a dielectric
constant of ¢,,, would exhibit the same electrical behavior
as a microstripline on sapphire. The expression given by
Owens et al. is [13]

ACCURACY OF THE TLM APPROACH

121
1+0.39(log (10w/h))*

€,0q=12.0—

(50)

It must be emphasized that this equation is applicable to
sapphire substrates only. Alexopoulos et al. approached
the problem of a microstripline on an anisotropic substrate
again from a quasi-static basis [14]. Their method is based
on a Green’s function formulation to compute the static
capacitance of the line. Their results are presented in terms
of the variation of the phase velocity with w/A.

Experimental measurements on the dispersion character-
istics of microstrip on sapphire have been reported by
Edwards and Owens [15]. In attempting to fit Getsinger’s
dispersion formula to their experimental results, they found
an empirical formula for Getsinger’s G factor for sapphire
substrates.

The following scheme was adopted to verify the TLM
solutions:

1) e, and z, were determined from the TLM disper-
sion curves.

2) e,., was computed from (50).

3) Getsinger’s dispersion formula was used to de-
termine €., and this was compared with the TLM
solutions.

-Single crystal sapphire is a uniaxial crystal characterized
by a dielectric tensor

€., 0 0
€E=¢€ 0 €yy 0 ‘(51)
0 0 e

with e, =€, =94 and ¢ ,, =11.6. In writing (51), we have
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assumed that the crystal is oriented such that the y-axis is
parallel to the optical axis. When used in microstrip cir-
cuits, sapphire substrates are usually cut with their plane
surfaces perpendicular to the optical axis so that the
material is constant everywhere in the plane of the sub-
strate. A propagating wave along the microstripline is then
not subjected to a change in permittivity at bends or
corners in the line.

The geometry of the problem is shown in Fig. 1. The
fundamental mode of propagation has even symmetry
about the y-axis, i.e., at x = 0. Hence, the boundary condi-
tions specified in the input data of the TLM computer
program are:

1) E.,=0Oand E,=0 along y=0and y=5».

2) E,=0and E,=0 along x=a.

3) H,=0and H,=0 along x=0.

4) E,=0and E,=0for y=h and —w/2 <x<w/2.

The dielectric material was assumed to be lossless and so
were the walls of the enclosure. Hence, to satisfy the above
boundary conditions, infinite conductivity was specified
along all electric walls, and even-mode symmetry about the
y-axis was imposed thus making this axis a magnetic wall.
Initially, the minimum number of nodes (corresponding to
h=Al) were used to obtain the dispersion curves for
w/h=3,5. Dispersion analysis by the TLM technique
involves resonating a section of the transmission line by
placing shorting planes along the axis of propagation (the
z-axis in this case), such that the images of the line in the
shorting planes appear to be continuations of the structure.
Each separation of the shorting planes then equals half of
the guided wavelength for the fundamental mode at the
frequency given by the resonant frequency of the cavity. If
the distance between the shorting planes is 2L, the phase
constant is given by 8 =u/2L. For TEM waves, 8 is a
linearly increasing function of frequency sirice the phase
velocity is constant and uniform throughout the medium.

In Figs. 10 and 11, the TLM results for the dispersion
curves depicting the phase constant as a function of
frequency for w/h=3 and w/h =5 are shown. In both
cases, the substrate height was A=A/ and b/h=6. Also
shown in the same figures are the quasi-static solutions of
Alexopoulos [14] and Getsinger’s dynamic solutions com-
puted as outlined above [10].

In executing the TLM program, 1000 iterations were
used to ensure convergence of the solution. This figure on
the number of iterations was arrived at after several runs of
the entire program for iterations between 200 and 2000.
Beyond 1000 iterations, the change in the resonant
frequency of the cavity was less than 1.0 percent. For
iterations less than 400, the TLM results were rather unsta-
ble, varying by as much as +10 percent from the conver-
gent solution. This is because the peak of the sinx/x .
computeér output response curve is not clearly defined for a
low number of iterations (N). Also, the proximity of
neighboring solution points corresponding to higher order
even symmetry modes results in a larger error when IV is
small.
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Single microstrip on sapphire substrate.

To enhance the fundamental-mode field configuration,
E, was excited at all the nodes lying directly below the
strip, and E, was excited along the edge of the strip to
provide the correct biasing for the field configuration of
the fundamental mode. This choice was made again after a
detailed study of the convergence of the results with re-
spect to the manner in which the network was excited.
Convergence was much faster if the approximate field
distribution was specified at the onset and the network
excited to enhance this mode. We note that the use of
symmetry greatly reduces the storage requirements; this
fact was fully exploited throughout the TLM analyses for
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Fig. 12. Effective permittivity versus frequency (w/h =1.0, h=3Al).
Single microstrip on sapphire substrate.

the various problems treated in this paper.

Even though a very small number of nodes were used to
describe the geometry of Fig. 1, the TLM solution was in
very good agreement with Getsinger’s dynamic solution
(within 7 percent) and the low-frequency results agreed
entirely with the quasi-static results due to Alexopoulos
(see Figs. 10 and 11). Also shown in the same figures are
the solutions for the air-filled and dielectric-filled micro-
strip.

Increasing the number of nodes should improve the
accuracy of the TLM results. This was investigated by
using two mesh points for the substrate, i.e., putting 4 =
2 Al As before, E, was excited at all nodes lying under the
strip and E_ at all nodes along the edge of the strip.
Agreement with Getsinger’s result was improved from about
7 percent to better than 2 percent. The TLM results for this
case are shown in Fig. 10 and 11. The quasi-static solutions
obtained by Owens er al. using the method of finite dif-
ferences are also shown for comparison at low frequencies
[13]. Fig. 12 shows the variation of the effective permittiv-
ity with frequency for the case w/h =1. Here, 1 = 3Al and
agreement with Getsinger’s result was extremely good—
better than 0.5 percent for the most part.

A special feature of the TLM technique is the potential
ability to determine the relative magnitudes of all the six
electromagnetic-field components at a particular frequency
for a specific mode of propagation, thus enabling a full
hybrid-mode solution to be obtained with each run of the
computer program. Defining the characteristic impedance
of the microstripline as Z,=E, /H, for a node lying
directly below the center of the strip, we computed the
frequency dependence of the characteristic impedance of
the line.

The computation of the characteristic impedance was
carried out simultaneously with the determination of the
dispersion curves presented earlier, i.e., the voltage at the
shunt node E, and the current at series node H, are
recorded at the end of each iteration. The results are shown
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Fig. 14.

in Figs. 13 and 14. The effective width of the microstrip
line decreases with increasing frequency. Since the line
impedance Z, is inversely proportional to the effective
width w,;, Z, therefore increases as frequency is increased.

As a further demonstration of the flexibility and gener-
ality of the TLM procedure, a gray-scale plot of the
transverse field distribution was obtained for low and high
frequencies. The nonhomogeneous field distribution is evi-
dent in Figs. 15 and 16, where E, is plotted for single
microstripline on sapphire with a strip-width to substrate-
height ratio of 0.75. In order to see the details of the field
distribution, more mesh points are needed than would be
required in a dispersion analysis. In the above figures, four
mesh points were used to describe the substrate, ie., &=
4 Al, six mesh points were used for the free space above the
strip. This was found to be adequate at a high frequency
since most of the field was then concentrated in the sub-
strate. At the lower frequency, the results were slightly
modified by the upper wall of the enclosure, resulting in a
flattening of the field distribution at the top. This effect
was judged to be tolerable since the field intensity at the
wall had decayed to about a tenth of its peak value.
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IV. NUMERICAL EXAMPLES

To demonstrate the versatility of the TLM method in
solving different microstrip problems, we shall provide the
following additional numerical examples.
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A. Microstrip on Substrate with Periodically Stratified
Dielectrics

Shown in Fig. 17 is a microstripline placed on a
substrate made up of alternate layers of isotropic dielectric
material of relative permittivities ¢; and ¢,. The length of
the period cell is d. Note that the two end layers in the
cavity are of width d /4 so that the images of the structure
in the end shorting planes appear to be continuations of
the structure.

According to Floguet’s theorem, an infinite set of spatial
harmonics exists for guided waves along a periodic struc-
ture. These spatial harmonics must be present simulta-
neously in order that the total field may satisfy the
boundary conditions. The eigenvalue equation for 8 for a
periodic structure will always yield solutions B8,=8+
2nw/d, in addition to the fundamental solution. These
other possible solutions are clearly the propagation con-
stants of the spatial harmonics. A complete w-8 diagram
thus exhibits k,d as a periodic function of Bd, that is, the
Bd curve is continued periodically outside the range

—7<Bd>m.

The principal values of Bd are plotted in Fig. 18 for
various values of ¢, and ¢,. The length of the unit cell in
curves 1, 2, and 3 is d =1.0 mm. The cutoff frequency for
the low-frequency passband is given by the value of k,d
when fd =+ #. Note that Fig. 18 shows only the first
passband of the periodic structure. Examination of the
diagram shows that the cutoff frequency may be reduced
by increasing €, or €,. Although the value of k,d at cutoff
was somewhat increased when the magnitude of d was
tripled, the overall effect of increasing d was to reduce the
cutoff frequency since k,d did not triple at cutoff. In
general, one may deduce the following conclusions: 1) To
increase the upper cutoff frequency, one should lower the
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LW £y = 10.0, €y = 20.0; d = 1,0mm
B, € = 10.0; €, = 11.0; d = 1.0mm
C. € = 2.00; €, = 3.00; d = 1.0mm
D. € = 2.00; €y = 3.00;, d = 3.0mm
Fig. 18. w — B diagram for microstrip on periodically stratified index of

refraction.
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Fig. 19. (a) Cross-sectional geometry of coupled microstrip pair.
(b) Electric flux lines for the two fundamental modes of two coupled
microstrips.

Even mode

dielectric constant of the material. The phase velocity of
the wave is lowered by reducing the length of the periodic
cell. Hence, by controlling the width of the cell, it is
possible to adjust the phase velocity of the wave. 2) Micro-
strip on a substrate with a periodically stratified index of
refraction exhibits the slow-wave and filtering properties
common to all periodic waveguiding structures.

B. Coupled microstriplines on Sapphire

The frequency-dependent even- and odd-mode phase
constants were determined for the structure of Fig. 19
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edge-coupled microstrip.

using sapphire substrate as an example. Also computed
was the frequency-dependent coupling length for the same
structure. The results are depicted in Fig. 20. Although a
b/h ratio of only 3 was used, the results obtained by
moving the upper boundary farther away were not signifi-
cantly different. The number of iterations of the computer
program was kept at 1000 to minimize truncation errors:

V. CONCLUSIONS

The simplicity of the TLM technique in solving prob-
lems dealing with complex waveguiding structures should
be noted. Although we have demonstrated only the solu-
tions of microstrip problems, the technique can be easily
extended to. solve waveguiding problems for integrated
optical circuits (IOC) or fiber optics [16]. The guldmg
medium may be anisotropic and inhomogeneous.
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