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Dynamic Three-Dimensional TLM Analysis
of Microstriplines on
Anisotropic Substrate

G. E. MARIKI AND C. YEH, FELLOW, IEEE

Abstract —The frequency-dependent propagation characteristics of a

hybrid mode along microstriplines on anisotropic substrates are presented

for the case where the constitutive parameter tensors maybe diagon~lzed.

A generalization of the three-dimensionaf transmission-fine-matrix (TLM)

numericaf procedure is used to obtain results for the phase constant j3,

effective permittivity Ceff, and the characteristic impedance Z, afl as

functions of frequency and the shape ratio (w/is). Also shown are resnfts

for coupled microstrips on a sapphire substrate.

I. INTRODUCTION

A LTHOUGH THE WORK reported in this paper was

carried out several years ago (but unpublished) [1],

recent interest in high-frequency (millimeter and submilli-

meter wave-length) microstrip circuits has prompted us to

publish our results [2]. It appears that the transmission-

line-matrix (TLM) approach that we used ‘to solve the

many problems dealing with enclosed microstrips with

anisotropic and/or inhomogeneous substrates is rapidly

becoming a very acceptable and viable way of dealing with

these problems in spite of its demand for large computer

memory and time [3], [4]. This is because of the enormous

decrease in computational cost as well as the r~alization of

the simplicity and versatility of the TLM approach as

compared with other available numerical or analytical

means [5]–[7].

Most of the original work on microstrip was based on a

TEM approximation mainly because the resultant formula-

tion is vastly simplified, and the solutions obtained agree

closely with experimental results in the low-frequency range

(below X-band). That this is so is exemplified by the

pioneering works of Wheeler [8], using a conformal map-

ping technique, and Silvester [9] who applied a Green’s

function formulation. As the need arose for hybrid in-

tegrated circuits operating at frequencies as high as 20

GHz and above, the TEM solutions were no lcmger satis-

factory since dispersion, which is significant at high fre-

quencies, is ignored under a TEM approximation. Several

techniques have been applied to determine the dispersion

properties of microstrip. Among these were Getsinger’s

empirical formulation [10] and the TLM method used by

Akhtarzad and Johns [11], [12]. The above-men.tioned

Manuscript received January 23, 1985; revised May 1, 1985.

The authors are with the Electrical Engineering Department, University
of California at Los Angeles, Los Angeles, CA 90024.

authors have presented results for the phase constant /3

and/or effective permittivity teff as functions of frequency.

Their results were strictly for isotropic substrates.

One of the practical design difficulties of using isotropic

substrates, such as alumina, is the significant variation in

the dielectric permittivity from different manufacturers or

even from batch to batch from the same manufacturer.

This essentially means that repeated measurements of the

dielectric permittivity are required for accurate design of

microstrip circuits. The use of anisotropic substrates with

stable electrical properties, such as sapphire, alleviates this

difficulty although it introduces a new problem in that new

techniques have to be developed to analyze microstriplines

on anisotropic substrates. The TEM approach was again

used by Owens, Aitken, and Edwards [13] and Alexopoulos

et al. [14] to determine the quasi-static properties of micro-

striplines on anisotropic substrates with a diagonal dielect-

ric tensor <. Measurements of the dispersion characteris-

tics of microstrip on sapphire substrates were also reported

by Edwards and Owens [15]. The TEM solutions men-

tioned above suffer from the same limitations as those

developed for isotropic substrates. The need for an effi-

cient technique to determine the frequency-dependent (dy-

namic) propagation characteristics of microstriplines on

anisotropic substrates is therefore apparent. This was the

motivation behind our work which was completed in 1978.

Since then a number of publications have appeared de-

scribing various techniques [5]-[7].

In the following, a description of the modified TLM

technique applied to the enclosed microstrip on anisotropic

substrate problems will be given. Numerical results with a

discussion on the accuracy of the TLM technique will. then

be presented. Also shown are further examples showing the

application to microstrip on periodically varying substrates

as well as the coupled microstrips on anisotropic substrate.

II. THE TRANSMISSION-LINE-MATRIX TECHNIQ~JE

The geometry of the shielded microstripline is shown in

Fig. 1. It consists of a conductive metallic strip of width w

and zero thickness placed on a dielectric substrate of
thickness h and a box-type enclosure of a perfectly con-

ducting material. The thickness of the metallic strip is

assumed to be vanishingly small and the properties of the
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Fig. 1. Cross-sectional geometry of a single microstripline

substrate are characterized by diagonal tensors of rank

two, i.e., a dyadics, for the permittivity g, permeability p,

and conductivity g. The tensor elements are, in gener~l,

functions of the cross-sectional coordinates x and y in a

rectangular coordinate system. Thus

-[

Cxx(x, y) o 0

<=C o 0 6YJX, y) o 1(1)

o 0 t,z(x, y)

[

Pxx(x> Y) o 0

&=/Jo o Pyy(%Y) o 1(2)—
o 0 P==(X, Y)

[

Uxx(x, y) o 0

g= o Oyy(x,y) o— 1 (3)

o 0 Uz=(x, y)

where co and p o are the free-space permittivity and per-

meability, respectively. Maxwell equations in component

form are

6’EZ 8EY
‘-‘= -POPXX(%Y)*ay az

aEx aE aH,_– --..== –popyy(x, Y)~
az ax

(4)

(5)

(6)
aEy aEx

—=- PoPzz(x>Y)#ax – ay

aHz aH,
—=(uxx(x, y)+c

dY – az
O,xx(x, Y));EX (7)

aHx aH
‘-~= (ujy(x, Y)+cofy.,(x!Y));~y (8)

az

aHy aHx
— = (u==(x, Y)+cOC..(X, Y));Ez. (9)

ax – ay

The TLM technique will be used to solve the above set

of equations together with the appropriate boundary con-

ditions. We shall assume that the guided wave is propagat-

ing in the z-direction

E, H- ~-J&

where ~ is the propagation constant.

(a)

(b)

Fig. 2. (a) Shunt-connected TEM lines. (b) A generalized shunt node.

A. The Shunt Node

Fig. 2(a) shows how a number of ideal lossless two-wire

transmission lines can be connected to form a two-dimen-

sional transmission-line matrix. Shunt nodes are formed

where the lines cross and these present impedance discon-

tinuities for waves propagating along the lines. The inter-

nodal separation Al is uniform throughout the matrix.

Note that for clarity in Fig. 2(a), single lines are used to

represent a transmission-line pair. A generalized shunt

node is depicted in Fig. 2(b). Here an open-circuited shunt

stub of length A 1/2 and normalized characteristic admit-

tance YYY (normalized with respect to the characteristic

impedance of the main line) is attached to the node. This is

called the perrnittivity stub. Also shown in Fig. 2(b) is an

infinite loss stub of normalized characteristic admittance

GYY. Hence, one notices that a pulse injected into the loss

stub from the node will be completely lost. A lumped

parameter equivalent network for an elementary matrix

section is shown in Fig. 3. In this equivalent network, the

short section of an open-circuited transmission line (the

perrnittivity stub) is represented by a shunt admittance of

value (jYYY/~)tan(o Al/2c). If ~A1/2c = mA1/?i
<<1, then tan (u A1/2c) = (u A1/2)~. Therefore, the

admittance of the open-circuited stub is = juCYYY A1/2.

This can be recognized as a capacitive admittance. Hence,

the total capacitance at the node is

“=2C(1++’A1)(lo)

The infinite loss stub of normalized characteristic admit-

tance GYY is represented by a lumped conductance of
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Fig. 3. Shunt node lumped network representation.
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fied:

(11)

Application of Kirchoff’s Current Law at node A gives (see

Fig. 3)

Hz= Iz (15)

HY=I
Y (16)

G
u—‘x= ZOXL

(17)

eo=2c (18)

~-~=[a+2c(’+H4~’12) ‘x’+6 (19)

Ex=vx. (20)

The above analysis was carried out for a shunt node in the
Similarly, from (8) and (12), we have

x – z plane. A similar analysis for a shunt node in the x – y

and y – z planes leads to, respectively, Hx = Ix (21)

=H%+2C(1++W’13)
(22)

(23)

and
4+ Yyy

&-~=(a+2c(1+~)+)vx ’14) -4 “

~YY = —
(24)

Equations (9) and (13) yield the following equivalences:

One notes that the subscripts for the currents do not
Ez = V= (25)

correspond to the coordinate direction along which the G

current flows; the subscripts are assigned at the series node ‘z” “ ~
(26)

(see Fig. 4) where a series node in, say, they-z plane has ,
4+ Yzz

common node current lX, etc. The choice of the subscripts c— = (27)
makes it easier to identify the line equations with Maxwell’s

Zz 4“

equations. The use of stubs, each with a different character- From the above analysis, it is concluded that half of
istic admittance, allows the TLM model to represent aniso- Maxwell’s equations cti be fully accounted for by three

tropic media correctly. shunt nodes oriented in the x – y, y – z, and x – z planes.

From (7) and (14), the following equivalences between The remaining half of Maxwell’s equations will be satisfied

the TLM equation and Maxwell’s equations can be identi- by the series node.
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Fig. 5.
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(a) Series-connected TEM lines. (b) A generalized series node.
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Fig. 6. Series node lumped network representation.

B. The Series Node

A series-connected two-dimensional transmission-line

matrix is shown in Fig. 5(a). As in the shunt-connected
TLM, the lines are ideal and lossless and the uniform mesh

parameter is Al. Fig. 5(b) shows a generalized series node

which is equipped with a short-circuited stub called the

permeability stub. The equations satisfied by the series

node can be derived using the lumped parameter represen-

tation shown in Fig. 6. The input impedance of the short-

circuited transmission line is

Zi~ = jZxx I_~ tan(~A1/2c) = jwLZXX A1/2. (28)

The validity of (28) is the same as was stipulated for the

short open-circuited stub associated with the shunt node,

namely,

uAl vAI
—--<<1.

2C=A
(29)

Equation (28) represents an inductive impedance, the mag-

nitude of the inductance being

()
~Al L.L!= ‘XX (30)

Application of Kirchoff’s Voltage Law around the loop at

the series node (Fig. 6) gives

av a% = 2L ~+ Zxx aIxJ— —
ay az ( -)-4 at -

(31)

A series node in the x – y and x – z planes will, respec-

tively, satisfy the following equations:

avy a< 2=, aIz—_ —
ax ay ()‘2L 1+7 x

(32)

and

avx 8K z

()

aIy

dz ax ‘2L l+? x“
(33)

The following additional equivalences complete the TLM

modeling of Maxwell’s equations:

pO=2L (34)

4+ Zxx
P.. = 4

——

4+ Zyy
Py, “ ~

4+ 22=
Pzz= 4 .

——

(35)

(36)

(37)

We have demonstrated that the use of three shunt and

three series nodes oriented in the x – y, x – z, and y – z

planes enables all of Maxwell’s equations for an inhomoge-

neous anisotropic medium to be accounted for properly.

What remains is to devise a way of interconnecting the six

nodes to form a three-dimensional node in space. One

notices that no restriction on the spatial distribution or

magnitudes of $, p, and g has been placed.——

C. The Three-Dimensional Node

Fig. 7 shows the construction of a three-dimensional

node capable of representing three-dimensional space and

satisfying Maxwell’s equations for inhomogenous aniso-

tropic media. The three-dimensional node is an intercon-

nection of three shunt nodes and three series nodes struc-

tured in such a manner that there is one shunt node and

one series node in each coordinate plane. The use of these

six nodes results in a model that properly accounts for all

of Maxwell’s field equations. Again, in Fig. 7, a single line

is used to represent a transmission-line pair. The nodes are

named to correspond to the field quantity they represent.
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Fig. 7. A three-dimensional node.

Fig. 8. Continuity of tangential fields across a dielectric boundalcy.

applicable:

Thus, the common voltage at shunt node EX corresponds to 13EZZ

the x component of the electric field. The common current
Ezl = EZZ + —

ay
Al (38)

at series node HX corresponds to the x component of the

magnetic field, and so on.

To represent a three-dimensional propagation space, a
6’EXZ

EX1 = EXZ + — Al (39)
number of these three-dimensional nodes are connected to ay

form a three-dimensional mesh network. Maxwell’s equa-

tions are thus satisfied at each three-dimensional node:
HX1=HX.+ ~Al 1(40)

D. Boundary Conditions in the TLM Model

1) Electric and Magnetic Walls: In the plane of an

electric wall, the tangential electric field must vanish. Simi- H=z = HZZ + ~ Al. (41)
larly, in the plane of a magnetic wall, the tangential mag- ay

netic field must be zero. Since the corresponding quantities

for the electric and magnetic field in the TLM model are Since the voltage and current in the transmission line are

the voltage and current in the transmission lines, electric smooth functions of position along the line, the continuity

and magnetic walls can be easily simulated in the TLM of the tangential fields across a boundary placed in be-

model by short-circuiting and open-circuiting the nodes, tween the r~odes is assured”

respectively. For example, to set EX and EY equal to zero
E. The Numerical Procedure

in a particular plane, all shunt nodes EX and EY lying in

that plane are shorted. To set, say, HY and Hz equal to I) Series and Shunt Nodes Scattering Matrices: lrn the

zero in some plane, the series nodes HY and H= in that TLM method, the numerical procedure involves determina-

plane are simply open-circuited. tion of the impulse response of the network. Delta-function

2) Dielectric Boundary: The continuity of tangential elec- impulses are introduced at various locations in the matrix

tric and magnetic fields across a dielectric/dielectric and these travel along the ideal transmission lines at the

boundary is automatically satisfied in the TLM model speed of li@t before being scattered at the nodes. Any of

when the three-dimensional nodes are joined up by elemen- the six field components may be excited initially by speci-

tary sections of ideal transmission lines. For example, for a fying initial impulses at the appropriate nodes. Likewise,

dielectric/dielectric boundary in the x – z plane as shown the response for any of the field components may be

in Fig. 8, since the common voltages at the shunt nodes monitored by recording the pulses that pass through the

correspond to the electric field and the common currents at relevant nodes.

the series nodes correspond to the magnetic field, the The shunt and series nodes represent impedance discon-

following equations valid for a transmission-line element tinuities to the traveling pulses. From Figs. 2(b) and 3(b),

joining the nodes on either side of the boundary are the voltage scattering matrices for the shunt and series
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Initial pulse

1st Iteration

2nd Iteration

Fig. 9. Propagation of a point source on a two-dimensional homoge-
neous TLM model.

nodes are

1]

Illlq,

llllq,

[S],k=+ 1 1 1 1 q, –[1] (42)

1111~,

1111~,

where

Y=4+~1+G,J (43)

[1] is the unit matrix and Sk stands for shunt. The sub-

scripts ~j may be xx, yy, or zz as appropriate. For the

series node, we have

‘s]s=;~zJJ:~:zJJ:zJl+[’]

(44)

where

z=4+zjJ. (45)

Thus, an impulse impinging on a shunt node would be

scattered in accordance with (42) and an impulse incident

on a series node would be scattered following (44).

2) Pulse Propagation in the TLM Model: The prop-

agation of pulses in the TLM model is illustrated in Fig. 9,

where the first two iterations following an initial excitation

pulse in a two-dimensional shunt-connected transmission-

line matrix are shown. For simplicity, we assume free-space

propagation, in which case there are no open-circuited

shunt stubs connected to the nodes. The distance between

the nodes is Al and the time interval between iterations is

to = Al/c since the individual pulses travel at the speed of

light. Upon impinging on a node, the pulse is scattered into

the four coordinate directions in accordance with (42).

Propagation in a three-dimensional model can be visual-

ized in a similar manner. In this case, the pulses are

scattered at the shunt nodes as well as the series nodes.

3) Form of Output and Accuracy of Results: The output

response function consists of a train of impulses of varying

magnitude in the time domain separated by a time interval

Al/c. Thus, the theoretical frequency response obtained by

taking the Fourier transform of the output response con-

sists of a series of delta functions in the frequency domain

corresponding to the modal resonant frequencies of the

cavity for which a solution exists. Truncation of the output

impulse response function (due to practical reasons) causes

a spreading of the solution delta function into sin x/x type

curves.

Let Vou,(t ) be the output impulse function taken for N

iterations of the matrix, i.e., the function starts at time

t = O and finishes at time t = NA1/c. P&(t) may be re-

garded as an impulse function V~ ( t ), extending to time=

infinity multiplied by a rectangular time function VP(t) of

unit height and width NA1/c as follows:

vout(t)=vm(t)x ~(t) (46)

where

/

NAI

~(t)= 1’
o<t<—

c. (47)

\ o, elsewhere

If the Fourier transform of Vou,(t ), Vm(t ), and Vp(t ) are

%t(f), %(f), and SP(f ), respectively, then the Fourier
transform of (46) is given by the convolution of S~( f ) and

SP(~), i.e.,

‘..,(f)=~~ ‘~(a) SP(f–a)da (48)
—w

and

sin rNAlf

‘P(f) = ~ ~NA~f e-J(”NAlf/c) (49)

c

Equations (47) and (48) indicate that SP(~), a curve of

sin x/c form, is placed in each of the positions of the delta

functions of the exact response S~(~), in both the positive

and negative frequency planes. The accuracy of the result

depends on the number of iterations N, since the greater

N, the sharper the maximum peak of the curve. The

accuracy is also affected by interference from the tail

regions of the reflected solutions in the negative frequency

plane as well as from the tail regions of neighboring



MARIKI AND YSH: DYNAMIC 3-D ANAL.YSIS OF MICROSTRIPLININ

solution points corresponding to other modes of

agation.

III. AccumcY OF THE TLM APPROACH

prop-

To study the accuracy of the TLM approach described

above, we shall compare our results with those obtained

using quasi-static approximations. Specifically, we shall

consider the comparison of the single micmstrip problem

for which quasi-static solutions have been presented [13],

[14]. The confidence we gain from this study will enable us

to use this TLM technique to treat other microstiip prob-

lems and present results which have not been analyzed

elsewhere.

Quasi-static solutions for the single microstrip problem

have been computed by Owens et al. [13] and Alexopoulos

et al. [14]. Owens et al. have applied the method of finite

differences to compute the capacitance per unit length C.

Knowing the value of C, they were able to compute the

low-frequency effective dielectric constant C,o. An ~al-

ytical expression for an equivalent isotropic dielectric

constant t ,e~ was developed. The implication is that a

microstripline on an isotropic substrate with a dielectric

constant of c,,~ would exhibit the same electrical behavior

as a microstripline on sapphire. The expression given by

Owens et al. is [13]

,eq = 12.0–
1.21

e (50)
1+ o.39(log(low/h))2 “

It must be emphasized that this equation is applicable to

sapphire substrates only. Alexopoulos et al. approached

the problem of a microstripline on an anisotropic substrate

again from a quasi-static basis [14]. Their method is based

on a Green’s function formulation to compute the static

capacitance of the line. Their results are presented in terms

of the v~ation of the phase velocity with w~h.

Experimental measurements on the dispersion character-

istics of rnicr~strip on sapphire have been reported by

Edwards and Owens [15]. In attempting to fit Getsinger’s

dispersion formula to their experimental results, they found

an empirical formula for Getsinger’s G factor for sapphire

substrates.

The following scheme was adopted to verify the TLM

solutions:

1) c~0 and ZO were determined from the TLM disper-

sion curves.
2) ~,e~ was computed from (50).

3) Getsinger’s dispersion formula was used to de-

termine Ceff and this was compared with the TLM

solutions.

-Single crystal sapphire is a uniaxial crystal characterized

by a dielectric tensor

-[ 1

c 00
<=.f~:

CYY
o ,(51)

o 0 c=,

with CXX= c=== 9.4 and (YY = 11.6. In writing (51), we have

795

assumed that the crystal is oriented such that the y-axis is

parallel to the optical axis. When used in microstrip cir-

cuits, sapphire substrates are Usually cut with their plane

surfaces perpendicular to the optical axis so that the

material is constant everywhere in the plane of the sub-

strate. A propagating wave along the microstripline is tlhen

not subjected to a change in permittivit y at bends or

corners in the line.

The geometry of the ~roblem is shown in Fig. 1. ‘Irhe

fundamental mode of propagation has even symmetry

about the y-axis, i.e., at x = 0. Hence, the boundary condit-

ions specified in the input data of the TLM computer

program are:

1) EX=Oand Ez=Oalong y= Oandy=b.

2) EY=Oand EZ=Oalongx=a.

3) HY=Oand HZ= Oalongx=O.

4) EX=Oand EZ=Ofory=hand– w/2cx Gw,/2.

The dielectric material was assumed to be lossless ancl so

were the walls of the enclosure. Hence, to satisfy the above

boundary conditions, infinite conductivity was specified

along all electric walls, and even-mode symmetry about the

y-axis was imposed thus making this axis a magnetic wall.

Initially, the minimum number of nodes (corresponding to

h = Al ) were used to obtain the dispersion curves for

w/h = 3,5. Dispersion analysis by the TLM technique

involves resonating a section of the transmission line by

placing shorting planes along the axis of propagation (the

z-skis in this case), such that the images of the line in the

shorting planes appear to be continuations of the structure.

Each separation of the shorting planes then equals half of

the guided wavelength for the fundamental mode at the

frequency given by the resonant frequency of the cavity. If

the distance between the shorting ,planes is 2L, the phase

constant is given by ~ = fi/2L. For TEM waves, ~ is a

linearly increasing function of frequency since the phase

velocity is constant and uniform throughout the medium.

In Figs. 10 and 11, the TLM results for the dispersion

curves depicting the phase constant as a function of

frequency for w/h = 3 and w/h= 5 are shown. In both

cases, the substrate height was h = Al and b/h = 6. Also

shown in the same figures are the quasi-static solutions of

Alexopoulos [14] and Getsinger’s dynamic solutions com-

puted as outlined above [10].

In executing the TLM program, 1000 iterations were

used to ensure convergence of the solution. This figure on

the number of iterations was arrived at after several runs of

the entire program for iterations between 200 and 2000.

Beyond 1000 iterations, the change in the resonant

frequency of the cavity was less than 1.0 percent. For

iterations less than 400, the TLM results were rather unsta-

ble, varying by as much as +10 percent from the conver-

gent solution. This is because the peak of the sin~t/x

computdr output response curve is not clearly defined for a
low number of iterations (N). AIso, the proximity of

neighboring solution points corresponding to higher order

even symmetry modes results in a larger error when N is

small.
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Single rnicrostnp on sapphire substrate.

To enhance the fundamental-mode field configuration,
E, was excited at all the nodes lying directly below the

strip, and EX was excited along the edge of the strip to

provide the correct biasing for the field configuration of

the fundamental mode. This choice was made again after a

detailed study of the convergence of the results with re-

spect to the manner in which the network was excited.

Convergence was much faster if the approximate field

distribution was specified at the onset and the network

excited to enhance this mode. We note that the use of

symmetry greatly reduces the storage requirements; this

fact was fully exploited throughout the TLM analyses for

A

7-’’””0

f(GHz)

Fig. 12. Effective perrnittivity versus frequency (w/h= 1.0, h = 3 Al).

Single rnicrostrip on sapphire substrate.

the various problems treated in this paper.

Even though a very small number of nodes were used to

describe the geometry of Fig. 1, the TLM solution was in

very good agreement with Getsinger’s dynamic solution

(within 7 percent) and the low-frequency results agreed

entirely with the quasi-static results due to Alexopoulos

(see Figs. 10 and 11). Also shown in the same figures are

the solutions for the air-filled and dielectric-filled micro-

Strip.

Increasing the number of nodes should improve the

accuracy of the TLM results. This was investigated by

using two mesh points for the substrate, i.e., putting h =

2 Al. As before, EY was excited at all nodes lying under the

strip and EX at all nodes along the edge of the strip.

Agreement with Getsinger’s result was improved from about

7 percent to better than 2 percent. The TLM results for this

case are shown in Fig. 10 and 11. The quasi-static solutions

obtained by Owens et al. using the method of finite dif-

ferences are also shown for comparison at low frequencies

[13]. Fig. 12 shows the variation of the effective permittiv-

ity with frequency for the case w/h =1. Here, h = 3 Al and

agreement with Getsinger’s result was extremely good—

better than 0.5 percent for the most part.

A special feature of the TLM technique is the potential

ability to determine the relative magnitudes of all the six

electromagnetic-field components at a particular frequency

for a specific mode of propagation, thus enabling a full
hybrid-mode solution to be obtained with each run of the

computer program. Defining the characteristic impedance

of the microstripline as ZO = EY/HX for a node lying

directly below the center of the strip, we computed the

frequency dependence of the characteristic impedance of

the line.

The computation of the characteristic impedance was

carried out simultaneously with the determination of the

dispersion curves presented earlier, i.e., the voltage at the

shunt node EY and the current at series node HX are

recorded at the end of each iteration. The results are shown
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in Figs. 13 and 14. The effective width of the microstrip

line decreases with increasing frequency. Since the line

impedance 20 is inversely proportional to the effective

width Weff, 20 therefore increases as frequency is increased.

As a further demonstration of the flexibility and gener-

ality of the TLM procedure, a gray-scale plot of the

transverse field distribution was obtained for low and high

frequencies. The nonhomogeneous field distribution is evi-

dent in Figs. 15 and 16, where EY is plotted for single

microstripline on sapphire with a strip-width to substrate-

height ratio of 0.75. In order to see the details of the field

distribution, more mesh points are needed than would be

required in a dispersion analysis. In the above figures, four

mesh points were used to describe the substrate, i.e., h =

4 Al, six mesh points were used for the free space above the

strip. This was found to be adequate at a high frequency

since most of the field was then concentrated in the sub-

strate. At the lower frequency, the results were slightly

modified by the upper wall of the enclosure, resulting in a

flattening of the field distribution at the top. This effect
was judged to be tolerable since the field intensity at the
wall had decayed to about a tenth of its peak value. ~,
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phire substrate.
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IV. N~RICAL EXAMPLES

To demonstrate the versatility of the TLM method in

solving different microstrip problems, we shall provide the

following additional numerical examples.
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Fig. 17. Geometry of microstrip on substrate with periodically stratified

index of refraction.

A. Microstrip on Substrate with Periodically Stratified

Dielectrics

Shown in Fig. 17 is a microstripline placed on a

substrate made up of alternate layers of isotropic dielectric

material of relative permittivities c1 and c~. The length of

the period cell is d. Note that the two end layers in the

cavity are of width d/4 so that the images of the structure

in the end shorting planes appear to be continuations of

the structure.

According to Floquet’s theorem, an infinite set of spatial

harmonics exists for guided waves along a periodic struc-

ture. These spatial harmonics must be present simulta-

neously in order that the total field may satisfy the

boundary conditions. The eigenvalue equation for j3 for a

periodic structure will always yield solutions ~~ = ~ +

2n ~/d, in addition to the fundamental solution. These

other possible solutions are clearly the propagation con-

stants of the spatial harmonics. A complete Q-p diagram

thus exhibits kod as a periodic function of fld, that is, the

fld curve is continued periodically outside the range

The principal values of fld are plotted in Fig. 18 for

various values of c1 and ~~. The length of the unit cell in

curves 1, 2, and 3 is d = 1.0 mm. The cutoff frequency for

the low-frequency passband is given by the value of kod

when /3d = + n. Note that Fig. 18 shows only the first

passband of the periodic structure. Examination of the
diagram shows that the cutoff frequency may be reduced

by increasing c1 or Cz. Although the value of kod at cutoff

was somewhat increased when the magnitude of d was

tripled, the overall effect of increasing d was to reduce the

cutoff frequency since kod did not triple at cutoff. In

general, one may deduce the following conclusions: 1) To

increase the upper cutoff frequency, one should lower the

+
4. c1 = 10.0, C2 = 20.0; d = I.Omm

B.
‘1

= 10.0; Cz = 11.0; d = l.Omw

(’. c1 = 2.00; C* = 3.00; d = l.Omm

D. = 2.00; Ez = 3.00;cl d = 3.Omm

Fig. 18. a –/3 diagram for rnicrostrip on periodically stratified index of

refraction.
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Fig. 19. (a) Cross-sectionaf geometry of coupled microstrip pair.

(b) Electric flux lines for the two fundamental modes of two coupled

microstrips.

dielectric constant of the material. The phase velocity of
the wave is lowered by reducing the length of the periodic

cell. Hence, by controlling the width of the cell, it is

possible to adjust the phase velocity of the wave. 2) Micro-
strip on a substrate with a periodically stratified index of

refraction exhibits the slow-wave and filtering properties

common to all periodic waveguiding structures.

B. Coupled microstriplines on Sapphire

The frequency-dependent even- and odd-mode phase

constants were determined for the structure of Fig. 19
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Fig. 20. Dispersion diagram for even and odd fundamental modes of

edge-coupled microstnp.

using sapphire substrate as an example. Also computed

was the frequency-dependent coupling length for the same

structure. The results are depicted in Fig. 20. Although a

b/h ratio of only 3 was used, the results obtained by

moving the upper boundary farther away were not signifi-

cantly different. The number of iterations of the computer

program was kept at 1000 to minimize truncation errors.

V. CONCLUSIONS

The simplicity of the TLM technique in solving prob-

lems dealing with complex waveguiding structures should

be noted. Although we have demonstrated only the solu-

tions of microstrip problems, the technique can be easily

extended to solve waveguiding problems for integrated

optical circuits (IOC) or fiber optics [16]. The guiding

medium may be anisotropic and inhomogeneous.
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